Time Series Analysis of Compositional Data Using a Dynamic Linear Model Approach
نویسندگان
چکیده
Compositional time series data comprises of multivariate observations that at each time point are essentially proportions of a whole quantity. This kind of data occurs frequently in many disciplines such as economics, geology and ecology. Usual multivariate statistical procedures available in the literature are not applicable for the analysis of such data since they ignore the inherent constrained nature of these observations as parts of a whole. This article describes new techniques for modeling compositional time series data in a hierarchical Bayesian framework. Modified dynamic linear models are fit to compositional data via Markov chain Monte Carlo techniques. The distribution of the underlying errors is assumed to be a scale mixture of multivariate normals of which the multivariate normal, multivariate t, multivariate logistic, etc., are special cases. In particular, multivariate normal and Student-t error structures are considered and compared through predictive distributions. The approach is illustrated on a data set.
منابع مشابه
Forecasting flow discharge through time series analysis using SARIMA model for drought conditions, a case study of Jamishan River
Nowadays, water supply is more limited and providing water is more difficult due to increasing population and demand for water. Thus, due to rainfall shortage and impacts of drought, the need for forecasting monthly and annual rainfall and flow discharge through time series analysis is acutely felt. One of the key assumption in time series is their static condition. However, hydrological time s...
متن کاملCombining time DEA scores using a dynamic panel data model
We define a combined DEA score to evaluate efficiency in agricultural research. The production model we propose considers efficiency measurements under variable returns to scale for each year in the period 2012–2017. We postulate a first-order autoregressive process in the presence of covariates, to explain efficiency. Powers of the autocorrelation coefficient estimated assuming a dynamic panel...
متن کاملOn the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach
This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...
متن کاملFitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کاملVoltage Regulation of DC-DC Series Resonant Converter Operating in Discontinuous Conduction Mode: The Hybrid Control Approach
Dynamic modeling and control of dc-dc series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely contin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002